
Note on Alias Suppression in Digital Distortion

Martin Vicanek

4. November 2023, revised 19. September 2024

Abstract

Various methods and their interplay for alias suppression in digital distortion are
considered, some of them refined.

1 Introduction

Aliasing is a notorious problem in digital sound synthesis and processing. In distortion
units, high-frequency components occur as a result of a nonlinear transfer function. Applied
point-wise in the digital domain, this amounts to direct sampling of the distorted signal.
Frequencies above Nyquist will fold back and produce unwanted anharmonic noise.

Oversampling is an obvious and often used technique to reduce aliasing. An alternative
approach published recently is based on convolution (or, more generally, lowpass filtering)
in the continuous-time domain [1]. The authors propose, in lowest order, a rectangular
filter kernel. If the width is taken equal to the sample separation, then the filter transfer
function, which is sinc(πf/fs), where fs is the sampling frequency, has zeros at multiples
of the sampling frequency. This is a very desirable property, as these frequencies get folded
back to zero frequency in the digital domain. Hence alias suppression will be most effective
in the (digital) low frequency region.

Consider a digital input sequence xn sent through a naive wave shaper, so that the output
sequence is

yn = f(xn) (1)

I call the wave shaper in eq.(2) naive because it will produce unwanted aliasing, making it
of limited use.

The authors of [1] suggest to convert the sequence xn first into the continuous domain via
linear interpolation, then apply the shaper, and subsequently perform a convolution with a
rectangular kernel. Sampling the result to get back to the digital domain, they arrive at the
following formula:

yn =
F (xn)− F (xn−1)

xn − xn−1

(2)
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where F (x) is the antiderivative of f(x). They provide examples for f(x) = tanh(x) and for
a hard clipper. They point out that numerical evaluation is ill-conditioned for xn close to
xn−1.

2 Making it transparent

Obviously eq.(2) introduces a latency of one half sample. This may not be a concern for many
applications, however, there is also some lowpassing happening. For a transparent shaper,
f(x) = x, eq.(2) yields

yn =
xn + xn−1

2
, (3)

which means that the highest frequencies will be lost (the transfer function has a zero at
Nyquist frequency, refer to the blue curve in figure 1). This may be perceived as a flaw: a
transparent shaper should not remove part of the spectrum!

Figure 1: Various lowpass filter responses. Blue: eq.(3). Red: eq.(5). Green:
convolution with a rectangular kernel of 1 sample width.

This shortcoming may be mitigated by a slight variation of the scheme presented in [1].
Delaying the convolution kernel by half a sample, we arrive at a relation similar to eq.(2),

yn =
F1/2 − F1

xn − xn−1

+
F1 − F3/2

xn−1 − xn−2

(4)

where F1/2 denotes F (xn+xn−1

2
), F1 = F (xn−1), and F3/2 stands for F (xn−1+xn−2

2
). Eq.(4) is

slightly more complex than eq.(2) but reduces aliasing equally well. It has a similar issue when
consecutive samples are nearly equal, xn ≈ xn−1 or xn−1 ≈ xn−2, resulting in loss of precision.
Whenever this happens, replace the corresponding fraction in eq.(4) by 1

2
f(xn−1). How close

exactly should the samples be for the replacement to be an advantage? That depends on
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the nature of the shaping function f(x) in the relevant region, and how accurately one can
compute the antiderivative F (x). As a rule of thumb, if ϵ is the machine precision, a threshold√
ϵ is not a bad choice.

Eq.(4) introduces one sample delay, however the lowpass effect is more gentle. For a trans-
parent shaper, eq.(4) becomes

yn =
xn + 6xn−1 + xn−2

8
. (5)

The attenuation at Nyquist frequency is only 6 dB (orange curve in figure 1).

Since eq.(5) describes a filter with two zeros on the z-plane, z1 = −1/(3+
√
8) and z2 = 1/z1,

the magnitude response may be easily equalized by adding an IIR-filter with poles determined
by the zero locations z1 and z2. One pole will be at z1. Because z2 lies outside the unit circle,
we place the corresponding pole at its mirror image (which happens to be z1) to obtain a
stable IIR-filter. This will leave the magnitude response unaffected. Hence we have two
similar one-pole filters in series,

yn = bxn − ayn−1 (6)

with a = 1/(3 +
√
8) and b = 1+ a. We suggest to place one of the filters before the shaper,

and the other after the shaper to make up for the lowpass effect of the convolution (sinc
filter). The latter reduces the shaped signal by about 4 dB at Nyquist (green curve in figure
1).

With the alternative eq.(4) and the compensation 1-pole filters in eq.(6) we have created an
alias suppression scheme which is perfectly transparent in the linear regime.

3 Making it simple

A particularly simple expression is obtained for the shaper function

f(x) =
x√

1 + x2
, (7)

for which the antiderivative is
F (x) =

√
1 + x2 (8)

Then eq.(2) may be cast into the form

yn =

√
1 + x2

n −
√

1 + x2
n−1

xn − xn−1

=
xn + xn−1√

1 + x2
n +

√
1 + x2

n−1

(9)

which allows numerically stable evaluation for all xn and xn−1. Similarly, eq.(4) may be
written as

yn =
1

4

(
xn + 3xn−1

F1/2 + F1

+
3xn−1 + xn−2

F1 + F3/2

)
(10)
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with

F1/2 =
√

1 + (xn+xn−1

2
)2

F1 =
√

1 + x2
n−1

F3/2 =
√

1 + (xn−1+xn−2

2
)2.

The shaper function in eq.(7) is very similar to the popular tanh(x) function. The latter,
however, is computationally more demanding, and furthermore requires special care in the
numerical evaluation of eq.(2) when xn is close to xn−1. A detailed analysis of the harmonic
intensities [2] revealed no significant differences between the two functions, hence we prefer
to use the shaper function in eq.(7) rather than tanh(x).

4 ADAA versus oversampling

So how does the outlined scheme based on continuous-time domain filtering (in the following
I will use the established term antiderivative antialiasing, ADAA for short) perform with
regard to alias suppression compared to oversampling? Figure 2 illustrates the situation.

Figure 2: Aliasing and alias suppression. Black: spectrum of a hard-driven
saturator, plotted as a continuous line for better visibility. The dashed line marks
the part beyond Nyquist frequency, which folds back into the audible band as an
alias. Subsequent foldings, which lead to more aliases, are left out for clarity.
Blue: 2x oversampling. Orange: ADAA. Magenta: ADAA and 2x oversampling.

We already noted that ADAA is good at reducing low-frequency aliases, which is desirable
(orange curve in figure 2). However, it is less efficient in the high frequency range, simply
because the sinc filter is not very steep.
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Alias reduction by oversampling depends on how far the signal reaches out beyond Nyquist.
The steeper the falloff, the more efficient is oversampling. Conversely, for a spectrum with
a mild falloff ∝ 1/f , as is the case for instance for a hard driven saturator, 2x oversampling
only reduces aliasing by 6 dB, 4x oversampling by 12 dB, and so on (blue curve in figure 2).

In fact ADAA and oversampling work best together (magenta curve in figure 2): ADAA
makes the falloff steep so that oversampling can shine. ADAA combined with 4x oversampling
makes aliasing practically a non-issue even for a hard clipper.

ADAA can be taken to higher orders in various ways [3]. Naturally, this results in more
complex expressions, and may even introduce additional zeros in the Nyquist band [4], which
in turn requires more oversampling to mitigate. I have not pursued this possibility because
I am quite happy with first order ADAA and oversampling, however it may be worth the
extra effort in applications with higher demands on aliasing suppression.

I am grateful to the members of The Audio Programmer Discord server for interesting dis-
cussions and valuable comments.
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