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1 Introduction

Digital harmonic oscillators are standard devices used in sound synthesis,
control systems, test and measurement equipment, heterodyning, frequency
conversion, and many other DSP applications. A harmonic or sine wave
oscillator generates a pure tone without any overtones. In additive synthesis,
a number sine waves are added to generate timbre the Hammond organ is a
prominent example of this principle.

Methods for generating sine waves in the digital domain fall roughly into two
categories:

1. Recursive oscillators, where the actual output value is computed from
previous states

2. Direct evaluation as a function of a phase accumulator (= non band-
limited ramp)

The scheme presented in this note belongs to the first category.

There are many algorithms for recursive oscillators, with different charac-
teristics in terms of accuracy (especially at low frequencies), stability, com-
putational complexity, etc.[1, 2]. In this note I present a new quadrature
oscillator as the only hyperstable, equi-amplitude quadrature oscillator that
I am aware of.

Recursive oscillators perform best at constant frequency. Modulation re-
quires coefficient(s) updating and may often result in amplitude change. For
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an equi-amplitude quadrature oscillator, the situation is less problematic. It
is somewhat difficult to add phase modulation (it can be done for a quadra-
ture oscillator, but it is not very efficient).

2 Recursion Scheme

Let un and vn denote the oscillator outputs. The goal is to provide recursion
equations for a harmonic quadrature oscillation, i.e.

un = cos(nω), vn = sin(nω) (1)

with a specified frequency ω in radians per sample. Given the state at some
discrete point in time n, the next state may be found by a simple rotation.
For reasons to become clear later, we will first advance from time n by half
a sample to the intermediate time n+ 1/2,:

un+1/2 = cun − svn (2)

vn+1/2 = sun + cvn (3)

where we have used the abreviations c = cos(ω/2) and s = sin(ω/2). Advance
another half step to time n+ 1,

un+1 = cun+1/2 − svn+1/2 (4)

vn+1 = sun+1/2 + cvn+1/2 (5)

Likewise, we may write down equations for the reverse transitions by half a
sample frm n+ 1 to n+ 1/2,

un+1/2 = cun+1 + svn+1 (6)

vn+1/2 = −sun+1 + cvn+1 (7)

and from n+ 1/2 to n:

un = cun+1/2 + svn+1/2 (8)

vn = −sun+1/2 + cvn+1/2 (9)

We will not make use of all eight equations (2)-(9), since they are redundant.
It will be sufficient to use a selection of four, namely equations (2) and (6),
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and equations (5) and (9). Thus, equation (2) provides an expression for the
intermediate state un+1/2. Then equation (6) advances u another half step
to the time n + 1. To propagate v from n to n + 1, subtract equation (9)
from equation (5) to obtain

vn+1 = vn + 2sun+1/2 (10)

Note that the intermediate state un+1/2 is only an internal temporary vari-
able, a stepstone to leapfrog from vn to vn+1. We may save two multiplies
if we work with the auxiliary quantity wn := un+1/2/c. Then equations (2),
(10) and (6) become

wn = un − k1vn (11.1)

vn+1 = vn + k2wn (11.2)

un+1 = wn − k1vn+1 (11.3)

where the two constants k1 and k2 are

k1 = tan(ω/2), k2 = 2 sin(ω/2) cos(ω/2) = sinω = 2k1/(1 + k21) (12)

Equations (11.1)-(11.3) constitute the main result of this paper. With initial
values chosen as

u0 = 1, v0 = 0 (13)

the result of the recursion is a quadrature harmonic oscillation as in equation
(1).

Figure 1 shows the block diagram corresponding to equations (11).

Below is a sample-by-sample processing algorithm in pseudocode.

// initialize u and v

at start do{

u = 1;

v = 0;

}

// update coefficients

if frequency changes do{

update w;
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k1 = tan(0.5*w);

k2 = 2*k1/(1 + k1*k1);

}

// iterate filter

for every sample do{

tmp = u - k1*v;

v = v + k2*tmp;

u = tmp - k1*v;

}

3 Stability

For a stability analysis we take the z-transform of equations (11.1)-(11.3),

w(z) = u(z) − k1v(z)

zv(z) = v(z) + k2w(z)

zu(z) = w(z) − zk1v(z) (14)

Eliminating w(z) and rearranging, we obtain the following homogeneous sys-
tem of equations for u(z) and v(z):

k2u+ [(1 − k1k2) − z]v = 0

(z − 1)u+ (z + 1)k1v = 0. (15)

Nontrivial solutions exist where the determinant vanishes,

z2 − 2(1 − k1k2)z + 1 = 0 (16)

For 0 < k1k2 < 2, the roots z1,2 of equation (16) are complex conjugate and
lie exactly on the unit circle. We may write

z1,2 = e±iω (17)

with the frequency ω given by

cosω = 1 − k1k2. (18)
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Even if k1 and k2 are subject to quantization in a real implementation, the
poles still lie exactly on the unit circle hence preventing exponential runaway:
the presented oscillator is hyperstable, as opposed to the well-known coupled
form quadrature oscillator.

Futrhermore, by virtue of equation (15),

u/v = ±i sinω/k2 = ±ik1/ tan(ω/2) = ±i

√
k1

(
2

k2
− k1

)
, (19)

i.e. the eigenmodes exhibit a phase lag between u and v of exactly π/2,
regardless of coefficient quantization. The ratio of the corresponding ampli-
tudes is unity if

k2 = 2k1/(1 + k21) (20)

In practice, equation (20) will be valid only within machine precision, result-
ing in slightly different amplitudes.

4 Modulation

An interesting question is how the system responds to frequency modulation,
i.e. coefficient changes while running freely. Neglect for a moment roundoff
errors introduced by finite precision arithmetics, then the trajectory in u-v-
space will be an ellipse. A deviation from a circular trajectory occurs because
equation (20) is fulfilled only to machine precision. Now if we change the
values of k1 and k2, the system’s trajectory will simply switch to another
ellipse, possibly moving at a different speed. As long as equation (20) remains
approximately valid, the new ellipse will be close to circular.

If coefficients are changed frequently, the deviations may accumulate in the
long run, ultimately resulting in an altered amplitude. Whether or not this
is a concern depends on the application. For sound generation in a musical
context, this is not an issue at all.
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5 Roundoff Error

A rigorous analysis of the effect of roundoff errors on the iteration equation
(11) is beyond the scope of this note. Quantization is often modelled as
additive noise, without taking into account a possible correlation to the sig-
nal itself. Such a model would result in a slow drift with the accumulated
error increasing as the square root of the number of iterations. However,
this behavior is not supported by empirical findings, which suggest that the
system rather locks in into a limiting cycle. The oscillator has been run at
44.1 kHz sample rate for days, with varying initial conditiona and coefficient
values. In no case has there been an unbounded drift. Again, this is in harsh
contrast with the coupled form oscillator, which shows systematic deviations
already in the first few seconds, and ultimately terminates in an exponential
runaway.
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Appendix: Some Common Oscillators

Table 1 lists some recursive oscillators with their respective properties. For
each listed oscillator tyxpe we give the governing equations below.

Biquad Oscillator

The biquad oscillator is a direct form I realization, and is the most used
oscillator form. With one multiply and one add it is a very economic scheme,
however accuracy is bad at low frequencies.

Recurrence Parameter Initialization Output

un+1 = kun − un−1 k = 2 cosω u1 = 0

u0 = − sinω

un = sin(nω)

Reinsch Oscillator

This is another CPU friendly oscillator, with good accuracy at low frequen-
cies. It is the ideal static oscillator.

Recurrence Parameter Initialization Output

un+1 = un + vn

vn+1 = vn − kun+1

k = 4 sin2(1
2
ω) u0 = 0

v0 = sinω

un = sin(nω)

vn = A cos[(n+ 1
2
)ω]

A = 2 sin(1
2
ω)

Digital Waveguide Oscillator

Another one-multiply oscillator with quadrature output, however with bad
accuracy at low frequencies.

7



Recurrence Parameter Initialization Output

sn = k(un + vn)

tn = sn + un

un+1 = sn − vn

vn+1 = tn

k = cosω u0 = 0

v0 = 1

un = A sin(nω)

vn = cos(nω)

A = − tan(1
2
ω)

Quadrature Oscillator with Staggered Update

Recurrence Parameter Initialization Output

vn+1 = un + kvn

un+1 = kvn+1 − vn

k = cosω u0 = 0

v0 = 1

un = A sin(nω)

vn = cos(nω)

A = − sinω

Magic Circle Oscillator

A popular ’almost quadrature’ oscillator. The outputs have equal amplitudes
and a phase difference of 90 degrees plus half a sample.

Recurrence Parameter Initialization Output

un+1 = un − kvn

vn+1 = vn + kun+1

k = 2 sin(1
2
ω) u0 = cos(1

2
ω)

v0 = 0

un = cos[(n− 1
2
)ω]

vn = sin(nω)

Coupled Form Oscillator

The standard quadrature, equal amplitudes oscillator. Unfortunaltely it is
not numerically stable: if left run freely, amplitudes will grow or decay ex-
ponentially because the poles generally do not lie exactly on the unit circle.
Therefore, some sort of automatic gain control has to be applied. Updating
the parameters, i.e. frequency modulation, is somewhat CPU-demanding.
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Recurrence Parameters Initialization Output

un+1 = k1un − k2vn

vn+1 = k2un + k1vn

k1 = cosω

k2 = sinω

u0 = 1

v0 = 0

u0 = cos(nω)

v0 = sin(nω)

Present Work

A stable quadrature oscillator with equal amplitudes, good accuracy at low
frequencies, and reasonable CPU load.

Recurrence Parameters Initialization Output

wn = un − k1vn

vn+1 = vn + k2wn

un+1 = wn − k1vn+1

k1 = tan(1
2
ω)

k2 = sinω

u0 = 1

v0 = 0

u0 = cos(nω)

v0 = sin(nω)
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Figure 1: Block diagram of the oscillator corresponding to equations (11)

Oscillator type Equal
ampli-
tudes

Quadra-
ture

Stable Low-
frequency
accurate

Biquad yes no yes no

Reinisch no nearly yes yes

Digital Waveguide no yes yes no

Quad Staggered Update no yes yes no

Magic Circle yes nearly yes yes

Coupled Quad yes yes no yes

This work yes yes yes yes

Table 1: Some common oscillators and their properties
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