
A New Reverse IIR Filtering Algorithm

Martin Vicanek

25. October 2015, revised 5. January 2022

1 Introduction

Recursive digital filters have an infinite impulse response (IIR). Their major
advantage over non-recursive filters is that they typically requrire fewer op-
erations to meet given filter criteria. A disadvantage is that recursive filters
per se have different group delay for different frequency components, which
manifests itself as a nonlinear phase-frequency relation. In situations where
processing may be carried out offline, Kormylo and Jain [1] pointed out that
a two-pass forward backward filtering yields linear phase. Image processing is
one such area of possible application. Later, Czarnach [2] devised a scheme to
deal with continuous input by dividing the data stream into blocks and pro-
cessing each block individually. Powell and Chau [3] improved that method
by employing an overlap add sectioned convolution. All block processing
methods have longer than necessary latency, however. Wang and Smith [4]
introduced a conceptually different scheme based on IIR tail cancellation.
Special measures need to be taken to deal with hidden unstable modes, and
there is a fundamental limit to the filter length.

Recently, a member of the Flowstone forum under the alias name cbbuntz
presented a surprisingly simple algorithm to implement time-revesed recur-
sive filters with real poles. In this note we elaborate on cbbuntz’ idea, extend
it to complex conjugate poles and provide two specific examples. To the au-
thor’s knowledge, the method has not been published before.

1

2 Algorithm

2.1 Real pole

Consider a simple filter with a single pole at z = c, with |c| < 1. The transfer
function is given by

H(z) =
1

1− cz−1
= 1 + cz−1 + c2z−2 + c3z−3 + . . .

= (1 + cz−1)(1 + c2z−2)(1 + c4z−4)(1 + c8z−8) . . . (1)

The last equality in eq. (1) says that the single-pole filter may be imple-
mented as a cascade of delays (z−n), attenuators (cn) and bypasses, with
delay times doubling at each stage, n = 2N , and the amplidude decaying
accordingly. Figure 1 shows the corresponding block diagram.

Figure 1: Block diagram of forward processing according to equation (1).

The single pole filter has infinite impulse response (IIR), hence infinitely
many delay terms would have to be accounted for to render the equality exact.
In practice, however, it is possible to truncate the IIR at some threshold
level, thereby turning the IIR into a FIR. Since the decay is exponential, the
corresponding error can be made arbitrarily small. If D is the signal-to-noise
ratio in dB, then the number of stages that need to be taken into account is

N = log2

(
− D

20 log10 |c|

)
. (2)

Time reversal of a FIR filter is straight forward: simply reverse the order
of the impulse response and add a total delay to make the time-reversed
filter causal. For the (truncated) structure in figure 1 this leads to the block
diagram in figure 2. Equivalently, we may write

Hr(z) = (c + z−1)(c2 + z−2)(c4 + z−4)(c8 + z−8) . . . (c2
N

+ z−2N) (3)

2

Figure 2: Block diagram of backward processing according to equation (3).

Equation (3) provides a stable algorithm for the time-reversed single-pole
filter using an array of delays and attenuators.

A pseudo-code for one stage of the time-reversed filter is given below, where
xn and un denote streams of input and output samples, respectively.

u[n] = c^k * x[n] + x[n-k]

This may be viewed as a sparse FIR filter with only two taps. The entire
filter, then, is a cascade of N + 1 stages with k = 1, 2, 4, 8, . . . , 2N . It is
advisable, of course, to pre-compute the coefficients ck.

We note that other truncation limits than powers of 2 samples are possible,
e.g. by choosing

H(z) = (1 + cz−1 + c2z−2)(1 + c3z−3)(1 + c6z−6)(1 + c12z−12) . . . (4)

and its time reversed counterpart

Hr(z) = (c2 + cz−1 + z−2)(c3 + z−3)(c6 + z−6) . . . (c3·2
N

+ z−3·2N). (5)

This may facilitate tighter latency bounds if the filter decay length falls
between 2N and 2N+1.

2.2 Complex conjugate poles

Consider a filter with a pair of complex conjugate poles c and c. Its transfer
function is

Hc.c.(z) =
1

(1− cz−1)(1− cz−1)
(6)

Such a filter may be viewed as a cascade of two single, complex poles. Thus
the obvious way to time-reverse it is to apply equation (3) twice in succession.
There is, however, a better way, resulting in half as much latency and CPU
cost.

3

The results in the previous section remain valid for a complex valued pole
c = a + ib, as long as its modulus is smaller than 1. A filter with a single
complex pole has a transfer function

Hc(z) =
1

1− cz−1
. (7)

where we have used the subscript c to indicate that the pole is complex. If
fed with a real input signal xn, the filter will produce a complex output signal
un + ivn:

Hcx = u + iv. (8)

On the other hand, the filter Hc.c. in equation (6) will output a real signal.
Comparing equations (6) and (7) reveals that

Hc(z) = (1− az−1 + ibz−1)Hc.c.(z), (9)

hence
u = (1− az−1)Hc.c.x, v = bz−1Hc.c.x, (10)

which implies
Hc.c.x = u + a

b
v (11)

In other words, we may realize a filter with c.c. poles by filtering with a single
complex pole c = a+ ib and taking a linear combination un + a

b
vn of the real

and imaginary outputs, respectively.

This result is also valid for the time-reversed counterparts of Hc and Hc.c.,
which may be realized with the structure in figures 3 and 4.

Figure 3: Block diagram of a time-reversed complex pole filter according to
equation (3). Boxes labeled c, c2, etc. represent complex multiplications.

4

Figure 4: Block diagram of a time-reversed complex conjugate pole filter.
The box labeled ”complex pole filter reversed” represents the structure in
figure 3.

A pseudo-code for the time-reversed filter with complex conjugate poles is
given below. First pre-compute powers (a + ib)k,

a2 = a * a - b * b

b2 = 2 * a* b

a4 = a2 * a2 - b2* b2

b4 = 2 * a2 * b2

a8 = a4 * a4 - b4* b4

b8 = 2 * a4 * b4

...

The first filter stage takes a real input stream xn and outputs a complex
stream un, vn,

u[n] = a * x[n] + x[n-1]

v[n] = b * x[n]

Subsequent stages for k = 2, 4, 8, . . . , 2N take a complex input stream xn, yn,

u[n] = ak * x[n] - bk * y[n] + x[n-k]

v[n] = bk * x[n] + ak * y[n] + y[n-k]

The filter output is obtained at the last stage (pre-compute a/b, of course):

out[n] = x[n] + (a/b) * y[n]

For higher order IIR filters there are various options to break them down into
single-pole and c.c.-pole units. One obvious way is straight factorization,
another is partial fraction expansion. The latter results in parralel filter
configurations with lower overall latency. In that case, however, the delays
of all parallel units must be equal.

5

3 Examples

3.1 Linkwitz-Riley Crossover

A Linkwitz-Riley (LR) crossover is a pair of complementary highpass and
lowpass filters. Most common are 4th order designs, where each filter arm
consists of two cascaded Butterworth biquad filters as depicted in figure 5
(a). Since the poles are identical for the lowpass and highpass filters, we may
separate the biquads into products of poles and zeros, and place the poles in
the common signal path, cf. figure 5 (b). To render the filter linear phase,
one c.c. pole pair may be time-reversed as shown in the previous section.
The zeros are symmetrical hence need not be time-reversed.

Figure 5: Block diagram of a 4th order Linkwitz-Riley crossover filter. (a):
Generic structure. (b): Shared common poles. (c): Linear phase imple-
mentation. (d): Topology with improved noise characteristics. (e) Improved
linear phase implementation.

It turns out that this realization has issues with the highpass branch at low
crossover frequencies. The placement of all four HP zeros at the end amounts
to taking a fourth(!) derivative, which greatly amplifies quantization noise
from the previous processing units. Therefore it is better to place two of
the zeros before the poles as in figure 5 (d) and (e). The cost is only two
additional multiplies.1

For a fourth order LR with 1 kHz corner frequency and 44.1 kHz sample rate

1As a reader pointed out, since the design is linear phase, the high-pass filter may also
be obtained by subtracting the low-passed signal from the (delayed) input signal.

6

it is sufficient to use 6 stages for time reversal, resulting in a latency of 64
samples. The filter operates over a dynamic range > 100 dB without any
apparent truncation artifacts, see figure 6, with a total of 6 complex and 6
real multiplies per sample.

Figure 6: Transfer function of a 4th order Linkwitz-Riley crossover filter.
Red: lowpass, Blue: highpass, Black: straight sum.

3.2 Hilbert filter

We start with an allpass filter network as in figure 7 (a), with outputs in
quadrature over a wide portion of the Nyquist band. Each filter arm includes
a cascade of eight second-order allpass units as in figure 7 (b). The coefficients
are given in table 1. The idea is to time reverse one of the allpass arms and
place it in cascade with the other arm as in figure 7 (c). To keep the latency as
low as possible, we will first transform the allpass cascade 1-8 into a parallel
structure by means of partial fractions.

The transfer function of the allpass cascade 1-8 is given by a product of eight
second-order allpass transfer functions. We will transform the allpass cascade
into a parallel structure by means of partial fractions with respect to z2,

H(z) =
8∏

i=1

z−2 − ai
1− aiz−2

= C +
8∑

i=1

Aiz
−2

1− aiz−2
(12)

7

i ai
1 0.0406273391966415
2 0.2984386654059753
3 0.5938455547890998
4 0.7953345677003365
5 0.9040699927853059
6 0.9568366727621767
7 0.9815966237057977
8 0.9938718801312583

i ai
9 0.1500685240941415

10 0.4538477444783975
11 0.7081016258869689
12 0.8589957406397113
13 0.9353623391637175
14 0.9715130669899118
15 0.9886689766148302
16 0.9980623781456869

Table 1: Coefficients for a Hilbert allpass network.

with the constants given by

C =
8∏

i=1

ai, Ai =
8∏

j=1

(1− aiaj)

/
8∏

j=1
j 6=i

(aj − ai) (13)

The numerical vaues are listed in table 2. The resulting topology is shown

A1 -10.40114191
A2 20.43520081
A3 -16.29902549

A4 8.998241341
A5 -3.976562059
A6 1.406370891

A7 -0.345760229
A8 0.040023521
C 0.004832826

Table 2: Coefficients for partial fractions in equation (12).

in figure 8 (a). Time reversal of each partial fraction in equation (12) is
straight-forward since the corresponding poles are real. Hence we may use
equation (3), however with z2 substituted for z.

The filter has a latency of 4096 samples and a sideband suppression of 90
dB over the entire audio band (30 Hz to 22 kHz at 44.1 kHz sample rate).
Figure 9 sows the impulse response.

4 Conclusion

We presented a new method for time reversal of filters with rational transfer
functions. Unlike in block processing, latency can be made as small as the
filter’s decay time. Time reversed filter structures are stable and numerically

8

Figure 7: Hilbert filter. (a): Allpass filter network. (b): Expanded allpass
unit. (c): True Hilbert transformer.

well behaved. Computational effort is a few times that of the original filter,
however it is much less compared to the correspomdmg FIR filter.

9

Figure 8: Time reversal of allpass filter cascade 1-8 in figure 7. (a): Parallel
structure. (b) Time reversal.

10

Figure 9: Section of 200 samples of the impulse response of the Hilbert filter
Orange: Filter output. Blue: Delayed input.

11

References

[1] J. J. Kormylo and V. K. Jain, Two-pass recursive digital filter with zero
phase shift, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
22, pp.384 -387 1974.

[2] R. Czarnach, Recursive processing by noncausal digital filters. IEEE
Transactions on Acoustics, Speech and Signal Processing, (Volume:30,
Issue: 3). 1982.

[3] S. R. Powell and P. M. Chau, A Technique for Realizing Linear Phase IIR
Filters. IEEE Transactions on Signal Processing, vol. 39. no. 11, 1991.

[4] A. Wang, J.O. Smith III, On fast FIR filters implemented as tail-canceling
IIR filters. IEEE Transactions on Signal Processing, vol. 45, no. 6, p. 1415,
1997.

[5] cbbuntz, post on the DSP Robotics User Forum, 2014.

12

http://www.dsprobotics.com/support/viewtopic.php?f=3&t=3175&p=17097#p17085

	Introduction
	Algorithm
	Real pole
	Complex conjugate poles

	Examples
	Linkwitz-Riley Crossover
	Hilbert filter

	Conclusion

